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Abstract: Behavior Trees (BTs) are a widely used framework for decision-making
in robotics due to their modularity, hierarchical organization, and reactivity. Large
Language Models (LLMs), known for their strong capabilities in natural language
understanding and structured generation, offer new opportunities for automating
BT construction from natural language instructions. While prior work has explored
LLM-based BT generation, most research has focused exclusively on English, limit-
ing accessibility for non-English-speaking communities. This paper investigates the
ability of LLMs—particularly sub-10B Small Language Models (SMLs)—to gener-
ate BTs from natural language, with a specific focus on Spanish. We evaluate the
impact of learning paradigms (zero-shot, few-shot, and fine-tuning), model size, and
language variation using NL2BT-bi, a novel bilingual dataset spanning 23 robotics
domains. Our results demonstrate that fine-tuned SMLs can achieve performance
on par with the best few-shot configurations of much larger 70B LLMs, suggesting
that SMLs can be both effective and efficient for multilingual BT generation.
Keywords: NL2CODE, Behavior Trees, SLM, Robotics.

Resumen: Los Árboles de Comportamiento (ACs) son un marco ampliamente uti-
lizado en robótica, gracias a su modularidad, estructura jerárquica y capacidad de
respuesta. Los Modelos de Lenguaje de Gran Tamaño (LLMs), conocidos por su
habilidad en la comprensión del lenguaje natural y la generación estructurada, abren
nuevas oportunidades para automatizar la construcción de ACs a partir de instruc-
ciones en lenguaje natural. Aunque investigaciones previas han explorado la gen-
eración de ACs mediante LLMs, la mayoría se ha centrado exclusivamente en el
inglés, limitando su accesibilidad para comunidades que hablan otros idiomas. Este
trabajo analiza la capacidad de los LLMs—en particular los Modelos de Lenguaje
Pequeños (SMLs) de menos de 10B parámetros—para generar ACs a partir de in-
strucciones en español. Evaluamos el impacto de distintos paradigmas de aprendizaje
(zero-shot, few-shot y ajuste fino), del tamaño del modelo y de la variación lingüística
utilizando NL2BT-bi, un nuevo dataset bilingüe que abarca 23 dominios del ámbito
de la robótica. Nuestros resultados demuestran que los SMLs de ajuste fino pueden
alcanzar un rendimiento comparable al de las mejores configuraciones few-shot de
LLMs de 70B, lo que sugiere que los SMLs pueden ser eficaces y eficientes para la
generación multilingüe de BTs.
Palabras clave: NL2CODE, Árboles de comportamiento, SLM, Robótica.

1 Introduction

Behavior Trees (BTs) have become a
widely adopted decision-making framework
in robotics due to their modularity, hier-
archical structure, and reactive properties

(Colledanchise and Ögren, 2018; Iovino et
al., 2022). Compared to traditional finite-
state machines, BTs offer a more structured,
scalable, and reusable approach for defining
complex robotic behaviors, making them par-
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ticularly valuable for autonomous systems.
However, manually designing effective BTs
requires substantial domain expertise, which
can be both tedious and time-consuming, es-
pecially for complex tasks.

Figure 1: Accuracy on the NL2BT-bi Spanish
test set for different model sizes across eval-
uation setups. Each group of bars represents
a model size, with the first bar showing zero-
shot results, the second showing the best few-
shot results, and the third showing fine-tuned
model results.

Large Language Models (LLMs) exhibit
remarkable capabilities in natural language
understanding, reasoning, and structured
output generation, making them promis-
ing candidates for natural language to code
(NL2Code) use cases (Chen et al., 2021; Ni-
jkamp et al., 2023; Yu et al., 2024). Recent re-
search on automated BT generation has also
explored the use of LLMs (Ao et al., 2024;
Izzo, Bardaro, and Matteucci, 2024; Zhou et
al., 2024). By leveraging in-context learning
and fine-tuning techniques, LLMs can gen-
erate BT representations from task descrip-
tions, reducing reliance on expert knowledge
and streamlining the development process.

Most research on automatic BT generation
has focused on English, limiting accessibility
for the Spanish-speaking robotics community.
Given that Spanish is one of the most widely
spoken languages, addressing this gap is cru-
cial for broader adoption and linguistic inclu-
sion in robotics.

This study evaluates the capability of
LLMs to generate BT representations from
natural language instructions, with a par-
ticular focus on Spanish and Small Lan-
guage Models (SLM). We investigate how fac-
tors such as model size, language, in-context
learning strategies, and fine-tuning influence
BT generation performance.

Through this research, we aim to establish
a foundational understanding of BT genera-
tion from Spanish instructions, contributing
to the broader adoption of LLM-based BT
methodologies in robotics across languages
beyond English, with particular attention to
sub-10B SMLs due to their advantages, such
as on-premise deployment and lower compu-
tational requirements. Another key contri-
bution of this work is NL2BT-bi1, a novel
dataset for the task of translating natural lan-
guage instructions into BTs. It features ex-
amples in both English and Spanish, span-
ning 23 distinct domains.

The research questions addressed in this
paper are as follows:

• RQ1: Can Language Models (LM) gen-
erate BTs from natural language us-
ing zero-shot prompting, and does in-
context learning (few-shot prompting)
improve the quality of results?

• RQ2: Does fine-tuning an SLM for BT
generation provide improvements over
in-context learning?

• RQ3: What is the impact of model
size on BT generation quality, computa-
tional efficiency, and resource consump-
tion? Are SMLs competitive?

• RQ4: Is there a notable difference in
the task results between Spanish and En-
glish?

The results shown in Figure 1 offer a com-
parative overview of accuracy on the NL2BT-
bi Spanish test set across various model sizes
and learning paradigms (zero-shot, few-shot,
and fine-tuning). They highlight how perfor-
mance is influenced not only by model scale
but also by the adaptation strategy. Notably,
fine-tuned SMLs achieve accuracy compara-
ble to the best few-shot configurations of 70B
LLMs.

The structure of this paper is as follows:
Section 2 reviews related work. Section 3
describes the experimental setup, including
models, datasets, and in-context-learning and
fine-tuning strategies. Section 4 presents our
results and analysis. Finally, Section 5 sum-
marizes key findings and provides insights for
future research.

1huggingface.co/datasets/orai-nlp/NL2BT-bi
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2 Related Work

2.1 Natural Language-To-Code
Beyond traditional NLP tasks, LLMs have
been applied to code generation, a field of-
ten referred to as NL2Code. Code generation
models such as OpenAI Codex (Chen et al.,
2021) and StarCoder (li2, 2023) have demon-
strated the ability to produce executable code
from textual descriptions, significantly reduc-
ing human effort in programming. CodeT5
(Wang et al., 2021), an identifier-aware pre-
trained model, enhances NL2Code capabil-
ities by improving semantic understanding
and syntactic correctness in generated code.
These advancements have streamlined soft-
ware development workflows and opened new
possibilities for automating structured code
synthesis.

Several new benchmarks and models fur-
ther expanded the NL2Code landscape. The
benchmarks TACO (Li et al., 2023), EvalPlus
(Liu et al., 2023) and CoderEval (Yu et al.,
2024) emphasize pragmatic and executable
code generation, while CodeAgent (Zhang
et al., 2024) evaluates LLMs as autonomous
agents capable of tool-augmented code gen-
eration. Newer instruction-tuned models
for coding, such as WizardCoder (Luo et
al., 2024) and DeepSeekCoder-V2 (Zhu et
al., 2024), and the latest flagship reasoning
models, such as DeepSeek-R1 (Guo et al.,
2025), have shown state-of-the-art results on
function-level and task-level code synthesis.

In robotics, NL2Code techniques play
a crucial role in enabling robots to au-
tonomously learn and execute behavior poli-
cies without manually defined rule sets (Sun
et al., 2024). By generating interpretable and
executable robotic control programs, LLMs
bridge the gap between natural language in-
structions and machine-executable tasks, as
demonstrated by Liang et al. (2023), which
leverages LLMs to generate structured code
for robotic control, reducing reliance on ex-
pert programmers.

Several works have explored LLM-driven
code generation for robotic behavior. Driess
et al. (2023) introduced PaLM-E, a mul-
timodal model capable of interpreting lan-
guage and sensor data to guide robotic ac-
tions. Similarly, Brohan et al. (2023) pro-
posed Robotics Transformer 2, a model de-
signed for large-scale robotic control. Boston
Dynamics has also investigated LLM-driven

behavior generation for its quadrupedal
robot, Spot, demonstrating real-world appli-
cations of LLMs in autonomous robotic tasks
(Petkauskas, 2023).

2.2 Behaviour Tree Generation

BTs are widely used for robotic decision-
making due to their modular and hierarchi-
cal structure. However, manually designing
BTs requires substantial domain expertise,
making automatic BT generation a promis-
ing area of research.

Prior studies have explored the integra-
tion of LLMs for BT generation, yet most
existing approaches focus on structured tem-
plates rather than open-ended tree construc-
tion. For instance, Cao and Lee (2023) pro-
posed BT-GPT, which employs GPT-based
models to generate robotic behaviors but
is constrained by predefined templates, lim-
iting adaptability to diverse and complex
task descriptions. Similarly, Izzo, Bardaro,
and Matteucci (2024) introduced BTGen-
Bot, a lightweight LLM fine-tuned on robotic
datasets for task-specific BT generation, op-
timizing computational efficiency but lacking
generalization beyond the training domain.

Recent works have attempted to move
beyond templated approaches by exploring
methods that enable LLMs to construct novel
BT structures autonomously. Wang et al.
(2023) investigated self-instruct learning for
open-ended BT generation, allowing LLMs
to create BTs without relying on rigid tem-
plates. Additionally, Lykov and Tsetserukou
(2024) developed the LLM-BRAIn dataset, a
structured reasoning benchmark designed to
evaluate LLM performance on BT generation
and related tasks.

Our work extends these efforts by system-
atically evaluating LLM-based BT generation
in Spanish, an area that has been largely over-
looked in previous studies. Unlike BT-GPT
(Cao and Lee, 2023) and BTGenBot (Izzo,
Bardaro, and Matteucci, 2024), which rely
on explicit fine-tuning or pre-defined struc-
tures, we analyze zero-shot, few-shot, and
fine-tuned approaches to determine the ex-
tent to which LLMs -particularly SMLs- can
generalize BT generation in Spanish and En-
glish context.
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3 Experimental Setup

3.1 Models
For our experiments, we selected two families
of language models: LLaMA3 and Qwen2.5.
These models were originally pretrained on
multilingual corpora encompassing English,
Spanish, and code, although the extent of ex-
posure to each language and modality varies
between families. This multilingual and mul-
timodal pretraining enables the models—each
to differing degrees—to comprehend and gen-
erate both natural language (in English and
Spanish) and code.

As our focus were SLMs, we selected sev-
eral sub-10B models from both families for
our experiments, complemented by a 70B
LLM for comparative analysis. Specifically,
the models used in this work are:

• LLaMA models: LLaMA3.2-1B,
LLaMA3.2-3B, LLaMA3.1-8B and
LLaMA3.1-70B (Grattafiori et al.,
2024).

• Qwen models: Qwen2.5-0.5B and
Qwen2.5-1.5B (Yang et al., 2025).

3.2 Datasets
Due to the lack of high-quality, publicly avail-
able datasets for the Natural Language to
Behavior Tree (NL2BT) task, we developed
a synthetic bilingual dataset specifically de-
signed to address this gap. Existing re-
sources such as BTGenBot (Izzo, Bardaro,
and Matteucci, 2024), with only 600 exam-
ples, are insufficient for fine-tuning or ro-
bust evaluation, while LLM-BRAIn (Lykov
and Tsetserukou, 2024) is automatically gen-
erated by an outdated language model2 and
contains numerous observable errors. More-
over, both datasets are limited in domain
coverage and lack the linguistic and situa-
tional diversity required for realistic and gen-
eralizable NL2BT applications. To overcome
these limitations, our dataset spans mul-
tiple domains—including home automation,
warehouse logistics, and autonomous trans-
port—and is crafted to ensure both linguis-
tic quality and task relevance in English and
Spanish. To construct the dataset, we lever-
aged the strong instruction-following capabil-
ities of GPT-4o, whose suitability for the task
was manually validated prior to large-scale

2text-davinci-003

generation. This validation involved analyz-
ing a random sample of 100 training exam-
ples, of which 94 were deemed correct, con-
firming the model’s reliability in producing
diverse and structurally rich examples.

The data generation process was as fol-
lows:

Domain Definition. We first defined a
list of 23 domains relevant to robotic appli-
cations (see Table 8 in Appendix B for the
full list of domains and corresponding exam-
ple instructions). These cover a broad range
of scenarios such as Home Automation and
Personal Assistants, Warehouse Automation,
Robotic Lab Assistance, Construction and
Infrastructure, among others.

Use Case Specification. For each do-
main, we designed three representative use
cases to ensure scenario diversity. For in-
stance, within the Warehouse Automation
domain, the selected use cases include:

• Inventory Management Robot: Scans
barcodes, restocks shelves, and organizes
inventory based on demand or layout
changes.

• Package Sorting Robot: Identifies pack-
ages, sorts them by destination, and en-
sures efficient routing for delivery.

• Automated Forklift: A robot that nav-
igates through the warehouse to move
pallets, avoiding obstacles and following
a structured path.

Instruction Generation. For each use
case, we generated 100 diverse natural lan-
guage instructions using GPT-4o, following
strict guidelines to ensure quality, diversity,
and task relevance. The instructions follow
a professional, engineering-driven tone. They
are action-oriented, with direct, explicit com-
mands. Each instruction includes decision-
making logic and task sequences.

Behavior Tree Generation. For each
instruction, we prompted GPT-4o to gen-
erate the corresponding BT in XML for-
mat, capturing the logic and flow needed for
a robot to autonomously execute the task.
The prompting template enforced valid XML
output, defined node types (e.g., Sequence,
Fallback, Action, Condition), and included
design constraints to ensure clarity, modular-
ity, and correct control flow representation.

Spanish Translation. Finally, we trans-
lated the English instructions into Spanish
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Figure 2: Sample from NL2BT-bi dataset
showing bilingual instructions (English and
Spanish) and the corresponding BT (XML).
Other metadata such as domain, use case de-
scription, available nodes, and node lists are
omitted in the image.

using GPT-4o, ensuring linguistic consistency
while preserving the technical precision and
structure of the original instructions3.

Each sample in the resulting dataset in-
cludes a Spanish natural language instruction
(alongside its corresponding English instruc-
tion) and a corresponding BT composed of
control flow and leaf nodes. All BT node
names are kept in English, following common
programming conventions.

The final dataset consists of 6,135 sam-
ples covering 23 diverse domains and use
cases. For validation and testing, we se-
lected disjoint subsets of domains and their
corresponding use cases (see Table 8 in Ap-
pendix B for details on domain splits). The
validation set contains 900 samples drawn
from three domains, each featuring three dis-
tinct use cases. Similarly, the test set in-
cludes three different domains and their as-
sociated use cases, with 15 randomly selected
samples per use case, totaling 135 test in-
stances. Among these, 5 were randomly cho-
sen to serve as few-shot examples. The re-
maining 5,100 samples constitute the train-
ing set. Figure 2 presents an example from
the dataset, showcasing a bilingual instruc-
tion (EN/ES) alongside its corresponding Be-
havior Tree (BT) in XML format.

3According to (Intento and e2f, 2024), GPT-4
achieved top COMET scores, comparable to those of
DeepL and Google Translate. Its translation fluency
was rated among the highest—alongside DeepL—and
its contextual understanding outperformed most tra-
ditional machine translation systems.

3.3 In-Context Learning
Strategies for NL2Code

We evaluated the effectiveness of LMs in
generating BTs from instructions formulated
in natural language employing different in-
context learning strategies. We examined
both zero-shot and few-shot learning ap-
proaches to assess their ability to produce
structured and executable BT representa-
tions. These strategies are particularly rel-
evant in real-world applications where prede-
fined datasets for fine-tuning are not avail-
able, and models have to efficiently gener-
alize to unseen tasks. In robotics, for in-
stance, users often provide high-level natural
language instructions without the possibility
of extensive training, making zero-shot and
few-shot learning highly practical.

For the zero-shot approach, we designed
a prompt (see Table 7) in Appendix A that in-
cluded a concise instruction directing the LM
to generate an XML-formatted BT, strictly
adhering to the available nodes. The input
consisted of a natural language instruction,
and the model was expected to produce a
valid BT.

For the few-shot prompting approach,
we provided the LM with multiple examples
for the task (ranging from 1 to 5) directly in-
side the prompt. While Izzo, Bardaro, and
Matteucci (2024) employed a one-shot ap-
proach, our study systematically explored the
impact of increasing the number of demon-
strations. To the best of our knowledge, there
was no prior systematic study on applying
few-shot in-context learning for BT genera-
tion, particularly in Spanish.

The effectiveness of both zero-shot and
few-shot prompting strategies was evaluated
through a series of experiments, detailed in
Sections 4.1 and 4.2, respectively.

3.4 Supervised Fine-Tuning (SFT)
Supervised fine-tuning (SFT) has proven ef-
fective for structured task generalization in
prior work (Lykov and Tsetserukou, 2024;
Izzo, Bardaro, and Matteucci, 2024). Thus,
we fine-tuned each model under 10B param-
eters on the NL2BT-bi dataset for up to 3
epochs. The training was conducted on the
training split of the dataset, while the de-
velopment split was used to select the best-
performing checkpoint based on validation
loss. We used a learning rate of 1.0×10−4 and
a batch size of 128. Due to the high compu-
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tational costs, we did not fine-tune Llama3-
70B. In addition, maintaining a 70B fine-
tuned model on-premise for a single task is
impractical even in industrial settings.

The SFT experiments were carried out
on NVIDIA A100 80GB GPUs (1-4 GPUs).
For efficient training we leveraged DeepSpeed
ZeRO (Rajbhandari et al., 2020) and Accel-
erate (Gugger et al., 2022) from the Hugging
Face Transformers library (Wolf et al., 2020).

4 Experiments
In this section, we present the results of our
experiments, structured as follows. First, we
analyze zero-shot performance (Section 4.1),
where models generate BT without prior ex-
amples. Then, we evaluate the impact of
few-shot in-context learning strategy (Sec-
tion 4.2), investigating how performance
evolves as the number of provided examples
increases. We then compare fine-tuned mod-
els with in-context learning approaches (Sec-
tion 4.3), assessing the relative effectiveness
of each method and the influence of model
size. Finally, we analyze the computational
efficiency and resource consumption of the
different language models (Section 4.4).

All experiments are evaluated using an
LLM-as-a-judge framework (Zheng et al.,
2023), with GPT-4o (Hurst et al., 2024) used
to assess output quality. A structured prompt
(detailed in Appendix C) guides the LLM to
verify whether the generated BT correctly re-
flects the input instruction and adheres to
the allowed node types. The LLM provides
a binary judgment (Valid or Invalid) along
with a concise technical explanation. Accu-
racy is reported as the percentage of BTs
classified as Valid. This evaluation strat-
egy enables semantic and structural valida-
tion that traditional code metrics like Code-
BLEU (Ren and others, 2020) cannot cap-
ture, while also avoiding the need for costly
and time-consuming manual evaluation. To
ensure reliability, we measured the correlation
between GPT-4o’s judgments and human an-
notations on a random subset of 100 exam-
ples, achieving 80% agreement.

4.1 Zero-Shot Results
Table 1 presents the accuracy results for
the zero-shot setting (Section 3.3) across the
Qwen and LLaMA models described in Sec-
tion 3.1, evaluating their performance on the
task using both English and Spanish com-

mands.

Name Size ES EN

Qwen2.5 0.5B 0.8 0.0
1.5B 5.4 5.4

LLaMA3

1B 1.5 0.8
3B 4.6 2.7
8B 9.2 9.2

70B 41.7 38.5

Table 1: Zero-shot accuracy on the NL2BT-
bi test set across Qwen and LLaMA models
for Spanish (ES) and English (EN).

Overall, most models show limited gen-
eralization capabilities in zero-shot BT gen-
eration with accuracy scores far from the
optimum. However, larger models show a
clear advantage in this setup. LLaMA3-
70B achieves the highest zero-shot accuracy
in both English (38.5) and Spanish (41.7),
substantially outperforming smaller models.

In contrast, SLMs like Qwen2.5-0.5B
and LLaMA3-1B achieve very low accuracy,
suggesting that without demonstrations, they
struggle to infer structured outputs effec-
tively.

4.2 Few-Shot Results
Tables 2 and 3 summarize the results of the
in-context learning approach for English and
Spanish, respectively. We report the accuracy
scores for varying numbers of examples in the
prompt, ranging from 1-shot to 5-shot.

Name Size 1 2 3 4 5

Qwen2.5 0.5B 1.5 8.5 3.9 9.2 8.5
1.5B 5.4 16.9 17.7 20.0 21.5

LLaMA3

1B 2.3 6.9 12.3 10.0 6.2
3B 6.2 7.7 10.0 16.9 15.4
8B 19.2 23.1 30.8 36.2 34.6

70B 40.8 45.4 50.8 56.2 61.5

Table 2: Accuracy on the NL2BT-bi (Span-
ish) test set in the few-shot setting, compar-
ing Qwen and LLaMA models with 1 to 5
in-context examples.

Overall, we observe a clear upward trend
in performance as the number of in-context
examples increases, particularly for larger
models. For instance, LLaMA3-8B im-
proves from 19.2 (1-shot) to 34.6 (5-shot) in
Spanish, and from 12.3 to 48 in English. This
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Name Size 1 2 3 4 5

Qwen2.5 0.5B 0.8 5.4 8.5 4.6 4.6
1.5B 4.6 13.9 17.7 18.5 19.2

LLaMA3

1B 4.6 3.1 6.2 4.6 6.2
3B 1.5 3.9 10.0 12.3 15.4
8B 12.3 20.8 25.4 32.3 48.0

70B 40.8 44.6 50.8 63.1 53.9

Table 3: Accuracy on the NL2BT-bi (En-
glish) test set in the few-shot setting, com-
paring Qwen and LLaMA models with 1 to 5
in-context examples.

indicates that model scale and demonstration
count both play critical roles in enabling the
model to better understand and generate cor-
rect BTs.

LLaMA3-70B consistently outperforms
smaller counterparts across all settings and
languages, with peak performance achieved
at 5-shot in Spanish and 4-shot in English.

Smaller models such as Qwen2.5-0.5B
and LLaMA3-1B show only marginal im-
provements with additional examples, rarely
exceeding 10-12 accuracy. This suggests that
low-capacity models struggle to benefit from
In-context learning alone in structured tasks
like BT generation.

These results highlight the importance of
both scale and demonstration design in few-
shot prompting. While few-shot in-context
learning improves performance, notable dif-
ferences remain—especially for smaller mod-
els—motivating the use of fine-tuning for fur-
ther gains.

4.3 Fine-Tuning Results
In this section, we present the results ob-
tained from the fine-tuned models, trained
as described in Section 3.4. Fine-tuning al-
lows models to internalize structural patterns
beyond short-context prompting, potentially
yielding higher accuracy scores.

Fine-tuning leads to substantial improve-
ments in accuracy for all models compared
to their few-shot counterparts. For instance,
Qwen2.5-0.5B, which reached at most 9.2
accuracy in the few-shot setting, achieves
over 50 accuracy post fine-tuning in both
languages. Similarly, LLaMA3-1B improves
from 6.2 (few-shot) to 52.3 (fine-tuned), indi-
cating that even small models can learn struc-
tured output formats when provided with su-
pervised training data.

Name Size ES EN

Qwen2.5 0.5B 53.1 51.5
1.5B 59.2 53.9

LLaMA3
1B 52.3 52.3
3B 53.1 53.9
8B 59.2 63.1

Table 4: Accuracy on the NL2BT-bi test set
(Spanish and English) using fine-tuned Qwen
and LLaMA models under 10B parameters.

LLaMA3-8B achieves the highest fine-
tuned performance with 63.1 accuracy in En-
glish and 59.2 in Spanish, matching the result
achieved by Qwen2.5-1.5B in Spanish. No-
tably, the performance gap between models
of different sizes is less pronounced after fine-
tuning than in the few-shot setting, suggest-
ing diminishing returns with scale once suffi-
cient supervision is available.

These findings confirm that fine-tuning is
a more effective and efficient strategy than
few-shot prompting for sub-10B models in
BT generation tasks. In Spanish, small mod-
els (e.g., LLaMA3-8B and Qwen2.5-1.5B)
achieve an accuracy of 59.2, while the best
few-shot result from LLaMA3-70B reaches
only slightly higher at 61.5. In English, fine-
tuned LLaMA3-8B even matches the few-shot
performance of LLaMA3-70B. This relatively
small gap highlights that fine-tuning enables
smaller models to approach, and in some
cases match, the performance of much larger
ones—making it a practical and resource-
efficient alternative when working under com-
pute or deployment constraints.

4.4 Computational Efficiency and
Consumption

Beyond evaluating the accuracy of BT gen-
eration, we analyze the computational effi-
ciency of the different SLMs and environmen-
tal impact (Samsi et al., 2023; Rillig et al.,
2023). These factors are crucial for selecting
models suitable for real-time robotics appli-
cations and large-scale deployment. We com-
pare two strategies:

• 4-shot prompting: The model re-
ceives four example demonstrations in
the prompt before generating a response.
This configuration yields optimal per-
formance across most models (see Sec-
tion 4.2).
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Model Size Accuracy TTFT Runtime GPU Energy Emissions

Qwen2.5 0.5B 9.2 5.1 (34%) 8.79 (48%) 1575 (90%) 0.11 (71%) 19.7 (71%)
1.5B 20.0 5.2 (32%) 8.65 (49%) 3807 (76%) 0.13 (68%) 21.7 (68%)

LLaMA3
1B 10.0 5.2 (32%) 3.72 (78%) 3019 (81%) 0.05 (86%) 9.5 (86%)
3B 16.9 7.8 (-1%) 12.62 (26%) 6687 (58%) 0.22 (43%) 40.0 (43%)
8B 36.2 7.7 16.99 15919 0.39 67.5

Table 5: Accuracy and computational efficiency for the 4-shot setting. TTFT is measured in
milliseconds, Runtime in seconds, GPU memory in MB, Energy in kWh, and Emissions in g
CO2. Percentages indicate improvement over the LLaMA3 8B.

Model Size Accuracy TTFT Runtime GPU Energy Emissions

Qwen2.5 0.5B 53.1 4.5 (17%) 4.52 (72%) 1340 (92%) 0.09 (76%) 15.0 (76%)
1.5B 59.2 4.7 (13%) 12.24 (23%) 3500 (78%) 0.26 (29%) 44.7 (29%)

LLaMA3
1B 52.3 5.8 (-7%) 8.41 (47%) 2757 (83%) 0.17 (53%) 30.0 (52%)
3B 53.9 5.2 (4%) 9.72 (39%) 6696 (58%) 0.21 (43%) 36.0 (43%)
8B 63.1 5.4 15.89 15934 0.36 63.0

Table 6: Accuracy and computational efficiency for the fine-tuned models (0-shot setting). TTFT
is measured in milliseconds, Runtime in seconds, GPU memory in MB, Energy in kWh, and
Emissions in g CO2. Percentages indicate improvement over the LLaMA3 8B.

• Fine-tuning: The model is fine-tuned
on the target task, enabling it to gener-
ate responses without in-context exam-
ples (see Section 4.3).

Although smaller models are capable of
running efficiently on widely available, lower-
powered GPUs, all experiments in this anal-
ysis were performed on a standardized high-
performance system (NVIDIA A100 SXM4
GPU with 80GB memory). This consistent
hardware setup eliminates variability caused
by hardware differences, ensuring that perfor-
mance comparisons reflect only differences in
model architecture and evaluation strategy,
and providing a fair and controlled basis for
comparing models of varying sizes.

To evaluate inference efficiency, we use
the llm-perf-benchmark library (Ruman and
contributors, 2024), which provides standard-
ized tools for measuring SLM performance.
Specifically, we report:

• Time to First Token (TTFT): The
time (in milliseconds) from issuing a
query to receiving the first token.

• Model Inference Runtime: The time
(in seconds) taken to generate the full
output.

Metrics were measured as the average
over 100 input samples from the NL2BT-bi

dataset (Spanish test set). For each run, we
recorded TTFT and total generation time.

Additionally, we evaluated resource con-
sumption in terms of GPU memory usage,
energy consumption (kWh), and carbon emis-
sions (g CO2), using CodeCarbon (Courty et
al., 2024)—a widely adopted tool for estimat-
ing power usage in machine learning work-
loads. These metrics are essential for assess-
ing the environmental impact associated with
deploying large-scale models.

Table 5 presents results for the 4-shot con-
figuration, while Table 6 shows results for
fine-tuned models evaluated in a zero-shot
setting. In both tables, we include accu-
racy, TTFT, TGT, GPU memory consump-
tion, energy usage, and emissions. Percent-
age improvements relative to LLaMA3-8B are
shown in parentheses.

To identify the best model configuration,
we compare 4-shot prompting and fine-tuned
(0-shot) models. Fine-tuned models consis-
tently outperform 4-shot models in accuracy
and offer similar runtimes, making them the
preferred choice.

Among fine-tuned models, Qwen2.5-0.5B
stands out for its efficiency—lowest runtime
(4.52s), energy (0.09 kWh), and emissions
(15.0 g CO2)—with a solid 53.1 accuracy.

Qwen2.5-1.5B achieves the highest accu-
racy 59.2 while remaining efficient, reducing
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energy use and emissions by 29% compared
to LLaMA3-8B. LLaMA3-3B also performs
well (53.9 accuracy), with 43% energy savings
compared to LLaMA3-8B, but it has a longer
runtime and higher memory usage. In con-
trast, LLaMA3-1B achieves nearly the same
accuracy (52.3) with 38% energy savings, and
Qwen2.5-0.5B matches the accuracy (53.1)
while offering the highest efficiency—saving
76% energy.

5 Conclusions
Our results show that zero-shot prompting is
insufficient for accurate BT generation from
Spanish instructions, particularly for small
models. Few-shot prompting improves per-
formance, especially for larger models, but its
impact is limited for models under 1B param-
eters.

Supervised fine-tuning consistently out-
performs prompting strategies across all sub-
10B sizes, enabling even small models like
Qwen2.5-0.5B and LLaMA3-1B to exceed
50% accuracy. This confirms fine-tuning as
the most effective method for Spanish to BT
generation task.

While model size plays a key role in zero-
and few-shot settings, fine-tuned small mod-
els narrow the performance gap with larger
ones. They also offer clear advantages for
deployment in computational efficiency and
sustainability.

Finally, we found that SLMs are capable
of generating high-quality BTs from natural
text in both English and Spanish. The over-
all performance trend was consistent across
both languages. This supports the viability of
BT generation from Spanish instructions and
highlights the importance of expanding re-
search and dataset coverage beyond English.
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A Appendix A: Example of
Zero-Shot prompt

Table 7 illustrates the complete zero-shot
prompt, including a task description in Span-
ish, as used in our multilingual experimental
setup. The prompt includes a concise descrip-
tion of the task, the required output format,
an explanation of the different types of BT
nodes, and a list of available node templates
for action and condition nodes. Additionally,
it provides design guidelines to ensure clar-
ity, modularity, and consistency in the gen-
erated XML structure. The goal is to assess
the model’s ability to understand and execute
the task solely based on this instruction.

B Appendix B: Domains and
Instruction Examples

Table 8 provides a detailed overview of the
application domains included in the NL2BT-
bi dataset. For each domain, we present a
representative example of a natural language
instruction that highlights the type of robotic
behavior expected in that context.

C Appendix C: Evaluation Prompt
for BT Validity

Table 9 presents the structured prompt used
to assess the validity of each generated Be-
havior Tree. The prompt provides clear vali-
dation rules and an expected output format,
ensuring consistency and objectivity across
evaluations.
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You are a skilled robotics engineer. Your task is to generate a Behavior Tree (BT)
in XML format that represents the logic and flow needed for a robot to perform the
given task. The BT should support autonomous execution, including conditions,
sequences, and decision-making.

Input: A single, clear natural language instruction describing a specific robotic
task or sequence.

Output Format: Provide only the XML Behavior Tree.

Node Types:
1. Control Flow Nodes:

Sequence: Executes children in order, stopping on failure.
Fallback (Selector): Executes children in order, stopping on success.
Parallel: Executes all children simultaneously, returns

success/failure based on criteria.
Decorator: Modifies child nodes (e.g., Inverter, Repeater, Timeout).

2.Leaf Nodes:
Action: Performs tasks (e.g., MoveTo(location), Pick(item)).
Condition: Checks conditions (e.g., IsObjectInRoom).

Design Guidelines:
Use meaningful names for actions and conditions by using the ID attribute
Ensure the XML reflects the conditional and sequential logic of the instruction.
Keep the tree modular and easy to understand.
The root element is <BehaviourTree>
Ports are configured using attributes. For example the action SaySomething
requires the input port message="Hello".

Avoid:
No comments or descriptions in the XML.

Generate the XML Behavior Tree for this instruction: Mientras transporta paquetes al
área de entrega, supervise continuamente los niveles de batería; si la batería cae
por debajo del 20%, pause las tareas, regrese a la estación de carga y reanude las
operaciones una vez que esté adecuadamente cargada. List of node availables:
[’<Action ID="MoveTo" location="PackagePickupArea"/>’, ’<Action ID="Pick" item="Package"/>’,
’<Action ID="MoveTo" location="DeliveryBay"/>’, ’<Action ID="Drop" item="Package"/>’,
’<Action ID="MoveTo" location="PackagePickupArea"/>’,
’<Condition ID="IsBatteryLow" level="20"/>’, ’<Action ID="PauseTasks"/>’,
’<Action ID="MoveTo" location="ChargingStation"/>’,
’<Condition ID="IsAdequatelyCharged" level="80"/>’, ’<Action ID="ResumeOperations"/>’]

XML:

Table 7: Zero-Shot prompt (Instruction in Spanish) used for Behavior Tree generation.
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Domain Example of Instruction
Train split
Autonomous Construction Robots After completing each foundation segment, perform dimensional accuracy check using in-

frared sensors; if deviation is detected, make necessary adjustments and record changes.
Construction and Infrastructure If the weather conditions are adverse, such as rain or extreme temperatures, pause the

operations and enter standby mode until conditions improve.
Consumer Electronics and IoT If the doorbell is pressed and the time is between 9 PM and 7 AM, chime the internal signal

at reduced volume, activate the front camera, and verify the identity of the visitor before
unlocking the door.

Education and Training Identify the difficulty level of the upcoming task based on the student’s progress; if a task
matches the proficiency level, proceed with task initiation; if too challenging, adjust the
task accordingly.

Entertainment and Interactive Robots If rain is detected, notify all nearby visitors of the weather condition, suggest indoor at-
tractions, and provide directions to the nearest sheltered area.

Environmental Monitoring and Protection Initiate daily maintenance protocol after completing all tasks; perform comprehensive sys-
tem diagnostics including sensor calibration and motor inspection; if any discrepancies are
found, initiate correction sequence and log maintenance activity before shutting down.

Hospitality and Food Service If a new customer is detected at a table, greet the customer, wait for a response, and then
prompt them for their order.

Hospitality and Guest Experience Detect and confirm the door’s open status using the onboard camera sensor; if the door
remains closed for more than 30 seconds, notify the monitoring system for guest assistance.

Media Production and Filmmaking Attach the camera securely to the tripod; confirm the camera mount is locked; initiate a
test shake to ensure stability; if instability is detected, readjust and perform the test again.

Military and Defense In case of detection of human presence within 10 meters, switch to alert mode, halt all
operations, and broadcast warning to surrounding personnel.

Retail and Customer Service Initiate scanning mode by directing sensor towards checkout item; if item is detected, com-
mence barcode scan; upon successful scan, register item to digital cart and display total on
screen.

Retail and Supply Chain Check for replenishment approval on the management console; once approved, gather nec-
essary transportation tools; move to the supply area to collect stock.

Robotic Bartenders and Waitstaff Navigate to the kitchen area after receiving a new order; if the order is ready, collect the
food tray carefully, ensuring no items are missing.

Robotic Lab Assistance After validating an entry, transcribe the data into the designated fields of the lab database
application; confirm data alignment with existing records; if alignment is incorrect, append
an error message to the daily report log.

Security and Surveillance Every 30 minutes, initiate a patrol routine by navigating the perimeter in a clockwise
direction, avoiding obstacles, and checking for anomalies.

Space Exploration Every communication cycle, check signal strength and integrity; adjust antenna alignment
to enhance transmission quality, and confirm successful data transfer before terminating
the cycle.

Tourism and Adventure Engage visual recognition system to identify potential artifacts; if artifact is detected, halt
movement and initiate detailed imaging process for documentation.

Validation split
Agriculture If the robot’s weed bin is full, navigate to the disposal unit, empty the bin, and resume

tasks from the last weed detection point.
Autonomous Vehicles If the robot encounters a steep incline, automatically switch to low gear mode, engage

additional traction controls, and proceed at half speed until the grade levels out.
Search and Rescue Upon detecting a human presence, utilize auditory sensors to verify distress calls; if a

distress call is confirmed, send an immediate alert to the command center and proceed with
task 5.

Test split
Healthcare and Hospital Assistance Navigate to the pharmacy storage area; scan for required medication; if medication is not

located, send an alert to the pharmacy staff.
Home Automation and Personal Assistants If in the bedroom and the bed is unmade, automatically make the bed; subsequently, proceed

with surface dusting and completion confirmation before exiting.
Warehouse Automation Calculate the optimal path to the destination using stored warehouse map data; while

navigating, constantly check for path deviations and recalibrate as needed.

Table 8: Overview of the domains included in the NL2BT-bi dataset, with example natural
language instructions corresponding to each domain.
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You are a senior robotics engineer. Your task is to determine whether the given Behavior Tree
(BT) is valid with respect to the exact content of the instruction and the list of available
leaf nodes.

Instruction: {{instruction}}

List of available nodes: {{tree_nodes|join(’\n’)}}

Behavior Tree (XML): {{behaviour_tree}}

Validation Rules:
- The BT must faithfully represent only the logic explicitly described in the instruction.
- Do not evaluate or assume any behavior not mentioned in the instruction.
- All leaf nodes (i.e., Action and Condition nodes) used in the BT must come only from the
provided list of available node names.
- Ignore whether the BT could be improved. Focus only on fidelity to the instruction and
compliance with the available node list.

Output Format: Return a JSON object with binary validity and a short explanation:

‘‘‘json
{

"result": "Valid" | "Invalid",
"explanation": "<brief justification based only on the instruction and node list>"

}‘‘‘

Table 9: Prompt used to evaluate the correctness of a generated Behavior Tree (BT).
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